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ON INTRINSIC ERGODICITY OF
PIECEWISE MONOTONIC TRANSFORMATIONS
WITH POSITIVE ENTROPY II

BY
FRANZ HOFBAUER

ABSTRACT
The results about measures with maximal entropy, which are proved in [3], are
extended to the following more general class of transformations on the unit
interval I:I1=\U;.,J, the J are disjoint intervals, f/J, is increasing or
decreasing and continuous, and h,.,(f) > 0.

§0. Introduction

The aim of this paper is to extend the results of [3] to a more general class of
dynamical systems. We consider (I,f), where I =[0,1] = Ui J, the J, are
disjoint intervals and f/J; is continuous and either strictly increasing or strictly
decreasing. Again we assume

(@) (Ji,J» -+, J.) is a generator for (I, f),

(b) hip(f)>0.

An invariant measure p on (I, f) is called maximal, if its entropy h{u ) is greatei
than or equal to the entropy of every other invariant measure, or, what is the
same by the variational principle {2, §18], if h(w) is equal to the topological
entropy h., (f) of (I, f). We want to get the same results about maximal measures
on (I, f) as in [3] for piecewise increasing transformations.

The f-expansion ¢ (see §1 for definition) gives an isomorphism of (I, f) with a
shift space X/, which preserves maximal measures. But ¢ is not order preserving,
as it was in [3]. Lemma 4 of [3] does not hold and all results using this lemma
need a new proof. To this end we construct a piecewise increasing transforma-
tion g on I, such that (I, f) is a factor of (I, g), and move the problems to (I, g).
And for this case they are solved in [3]. Hence all results proved there are also
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valid in this more general case (Theorems 1 and 2 of §2 and Theorems 3 and 4 of

§3).

§1. Let (L f) be as in the introduction. X, denotes the full one-sided shift over
{1,2,---, n}, o the shift transformation and = the lexicographic ordering on ...
The f-expansion ¢:I—3, is defined by ¢(x)=x = xixx>--+, such that
fi(x)E J, fori =20. We have ¢ of = o ° ¢. Furthermore ¢ is injective because of
(a), but not order preserving (unless f/J; is increasing for all i). Call i good, if f/J;
is increasing and bad, if f/J; is decreasing. We introduce a second order relation
< in 3. Let x,y €3, and k =0 be the largest integer such that x; = y; for
0=i=k-1. x<y, if x =y or if the number of bad x;’s in x¢x; - * xi is even
and x. <y, or if the number of bad x;’s in xex, - - - xx— is odd and x; > y,. With
this definition we have x =y in I if and only if ¢ (x)<e(y) in Z.. Define
3= _‘TI) C3.,.. 3\ (I)is countable (the proof is the same as that of lemma 2 of
[3]), hence a nullset for every maximal measure. Therefore (I, f) and 3; have
isomorphic sets of measures with maximal entropy. If J, =(r,s) set a' =
lim, ;¢ (t) and b’ = lim, ;,¢(t). The proof of the following result is as in [3] (cf.
also §9 of [1]).

3 ={x €3 :a%<o*x<ab™ forall k = 0}.

Now we construct a piecewise increasing transformation g : I — I, of which (I, f)
is a factor, and move the problems to (I, g). Set K, ={x/2:x € J;} and K, =
{1—x/2:x € J.} (1 =i = n), where i’ stands here and in the sequel for2n —i + 1.
Write f; for f/J.. Define g : K, — 1 by

fi(2x)/2 if i is good
gi(x)= for 1=i=n,
1-fi(2x)/2 ifi is bad
g(x)=1-g.(1—x) for n+1=i=2n

and g(x)=g(x), if x€K: (1=i=2n). For x =3 choose one of the two
possibilities. Figure 1 shows an example of an f and of the corresponding g. g has
the property that

(1.1) 1-g(x)=g(l-x)
Define p:(I,g)— (L f) by

2x if x =1,
plx)=

2-2x if x =3,
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Fig. 1.

Then pog =fop and p is 2-1 (except for the point x =3). Let ¢ : (I, g)— 23,
denote the g-expansion and, if K;=(r,s), set ¢’ =lim,¢(t) and d’' =
lim, ;¢ (t) (1=j=2n). We have by (1.1)

(1.2) (cly=di for 1=j=2n and k=z=0.

From [3] we know that $(I)=3; = {y € 3}.: ¢ = oy =d” Vk 2 0}. Let 3, and
3, denote the natural extensions of 3; and X, respectively (3, ={x €3, =
{1, . n}°: xixeer -~ €/ Yk € Z} and there is a 1-1 correspondence between
the set of invariant measures of a shift space and that of its natural extension
preserving the entropy). We consider ¢ ep ¢ ~':2; — =} and denote it again by
p.

LEMMA 1. p:3,— 3] is given by p(y)=q(yo)q(y:)- -, where q(i)=i, if
l=i=nandi' ifn+l1=i=2n

The proof is evident. We have also p:%,—3; given by p(y)=
- q(y-1)g9(yo)q(y:)- - -. Furthermore

a'" for 1=i=n,
(1.3) p(c')=p(d)= {

b' for n+1=i=2n,

Xi lf g(KYi—I)C[O’%]’
(1.4) p~'(x)={y.y’t,  where y ={
x; if g(Kys—x)C{%’ 1]

(y'stands for yjyi--- or - yl,yiyi---).

From (1.4) one sees easily that 3; contains exactly twice as many admissible
blocks (i.e. blocks occurring in points of 3.;) of length n as %;. Hence it follows
directly from the formula for h., that he(Z:) = hep(E7).
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§2. Let o[xox: - Xm] ={y €%/ :y; = x; for 0 =i =m — 1} denote a cylinder
set. For an admissible block xox, - x,_, in f, i.e. ofxo " xm_i] #, define
Gyoxo =" (X0 Xmo1]). Let D ={(Xm 1, Geyonpy)t ofXo* xm1] # S}, To-
gether with the arrows (Xm—1, Gxy5,,_1) = (Xm, G xo-5,,), D becomes a diagram M
(cf. [3]). Set 2n ={z € D?: there is an arrow from z; to z., in M for all | € Z}.
As in [3] we want to define an isomorphism ¢ :2y\N —2,, where N =
{x€3,:IMEZ so that Vj<m Tk =j with XiXis,* "X = Q""" Qi OF
bio-- - bi._, for some i and : - X-2Xm—1X. is not periodic}.

Todo thisset H,,.., ,= " ([yo: " ym-1]) T3, for all admissible blocksin 2,
set D ={(ym_1,H,,y, ):olyo: - ym—1] # in 2;} and together with the arrows
Ym-ts Hyyon, )= (Yo H,,..y.) We get a diagram M. Define r: D — D by

F (Y-t H ooy ) = (@ (Ym-1)s G aar-a6m 0)-

If z,,2,€ D, there is an arrow z,—z, if and only if there is an arrow
r(zi\)— r(z.), i.e. r respects the arrows in M 4nd M.
Let 4 be defined as %u. Define p:25 — 2y by

p(rzz0zi )= r(zo)r(zo)r(z) -

The sequence at the right hand side is in X, because r respects the arrows of M
and M. r and p are again 2-1. As g is piecewise increasing we have an
isomorphism ¢ :3,\N — Sy constructed in §2 of [3], where N={y €3,
Im €Z so that Vj <m Ik =j with y, -~y = b~ Cinr OF di+ - d s for
some i and - y,_y. is not periodic} = p }(N). We define ¢ :3,\N — 3\ by
¢ =podop, ie. such that the following diagram is commutative.

T\N——‘”» Elm
SAN_2, 3y

LEMMA 2. ¢ is well defined and an isomorphism.

PrOOF. Let x € 3,\N. p~'(x) contains two points y and y’ (cf. (1.4)). But J(y)
and §(y') are mapped to the same z €3, by p because, if §(y) has entry
(yuis Gy,-v,) at some coordinate, then ¢(y’) has entry (ym, Gyi.y,) at this
coordinate (cf. the definition of ¢ in §2 of [3]). That ¢ is an isomorphism, follows
because ¢ is one. One can define ¢ ' in the same way as .

LEMMA 3. If v is a o-invariant measure concentrated on N then the entropy
h(v) of v is zero.
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ProoF. Let © be the measure on 2, defined by

P(lyo s ym-1]) =20 6[q (ya) - - - G (ym-1]).

It is o-invariant, because k €{1,2,---,2n} can be preceded either by m or by
m'€{1,2,---,2n} in a point y € X, not by both (cf. the definition of g). It
follows directly from the formula for the entropy that h(#) = h(v). Furthermore
pop™'=v and p '(N)= N, hence #(N)=1. By lemma 7 of [3] it follows that
h(?)=0 and hence h(v)=0.

Because of (b) it follows from Lemma 3 that N is a nuliset for every maximal
measure (cf. §0 of [3]). Hence

THEOREM 1. (2, 0) and (3, o) have isomorphic sets of maximal measures,
and hence the same is true for (I, f) and (Zm, o).

We consider M as a matrix with entries 0 and 1. M,, = 1, if and only if we have
an arrow j —> k (j,k € D). Let M', M?,- - - be the irreducible submatrices of M.
The proof of the following theorem about 2 is the same as in [3].

THEOREM 2. (i) hip(Zn) = log r(M), the logarithm of the spectral radius of the
I'-operator u» uM (u € l).

(ii) Every ergodic maximal measure is concentrated on a 2y =
{zeD*:M., . =1 for all k €Z} satisfying r(M') = r(M).

(i) For every such M’ there is at most one maximal measure concentrated on
3. It is Markov given by m, = ujv; and Py, = M. [r(M)y; (j, k € D), where u is
a left and v a right eigenvector of M' for the eigenvalue r(M') = r(M).

It suffices to determine the ergodic maximal measures, because they are the
extremal points of the compact convex set of all maximal measures. For this one
can use Theorem 2. To get more information about M, we can use the results
about M obtained in [3]. As there we divide every ¢’ (1 =i =2n) into initial
segments of the d’ (1 =j =2n) and denote their lengths by r(i, 1), r(i,2), -
(r(i,m)z 1), ie.

c‘r(i,l)+~»~+r(i.m)+k = d’k for 0=k = I’(i, m + 1)_ 1, ] = C:(i,1)+--<+,(i‘m).
C :(i,1)+---+r(i,m+1) 7£ d{(i,m+])

Similarly divide every d’ (1 =j =2n) into initial segments of the ¢’ (1=i =2n)
and denote their lengths by s(j,1),5(,2),- - (s(j,m)=1). We have always
r(i,1)=s(i, 1) and by (1.2) we have r(i,m)=s(i’,m)for 1=i=2n and m 2 1.
One getsc' andd' asp '(a')={c',d'}and p~'(b')={c",d'} (cf. (1.3)). In[3] itis
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proved that M can be described as follows. D={(A i k) (Bjk):1=ij=2n,
k=1and (A, ik)=(B,i k) for 1=k =r(i,1)}. M has the following arrows.

(AL k)= (A Lk +1), (B,j,k)=>(B,jk+1).
It k=r(i, D+ --- +r(i,m) for some m then

(A i, k)= (B,jr(i,m)+1), where J = Criyrtrm-1) and

(A i,k)—= (A 1, 1)=(B,t,1) for ci<t <dGm.

If k=s@G D+ ---+s(,m) for some m then (B,jk) —

(A, i, s(j,m)+1), where i = dlgi+ssgm-n and (B, j, k) = (A, 1, 1)) =

(B, t,1) for cigm<t<di.
One gets M applying r to the elements of D. As (A,i k) stands for
(ci 1 Heoop ) and (B,j, k) for (dk-, Haj-ai.,) we have r(A,i,k)=r(B,i' k).
Hence we get M identifying (A, i, k) and (B,i’, k) in D. Denote this equivalence
relation by ~ . Then M = M/~ . Arrows are respected by ~ , because they are
respected by r.

ExampLE. Let n =2, f/J, is increasing, f(end point of Ji)=1, f/J; is
decreasing and f(J>) = [, i.e. f has a graph like the one in Fig.2. At the right hand
side we have drawn the graph of the corresponding g.

l
|
l
|
I

|
|
l
|
|
I
|
l
|
|
1
L

Fig. 2.

From [4] we know what the diagram M for g looks like. Let ¢ be the
g-expansion of O and d the g-expansion of 1. Let ri,r, - -+ be the lengths of
initial segments of 1d in ¢. By symmetry of g, ri,r,, - - - are also the lengths of
initial segments of 2¢ in d. D can be represented by {(A, k).(B,k):k = 1} and
we have arrows (A, k)= (A k+1), (B,k)=(B,k+1), (An+ - +r)
— (B, 1), (B.ri+ -+ +1a)— (A, 1) (cf. 81 of [4]).

r I s
N PR AN
—— . et tre et {(A,k)}

”>< >§ e e {(B.k)}
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We get M identifying (A, k) and (B, k). Hence D ={k :k =z 1} and we have
arrows k >k +land i+ - +r,—r,

r, r, s
—— e, ———————

Uv' \_;_/

We know from [4] that M contains exactly one irreducible submatrix with
maximal spectral radius. Hence the same is true for M and by Theorem 2 an
(1. f) as above has always unique maximal measure.

§3. We want to generalize two theorems of [3].

TueoreM 3. (i) I = U I (finite or countable union), where every I, is a finite
union of closed intervals. If i <j, I, and I, have at most finitely many points in
common and there is no x € I\I; with f*(x) € I for some k 2 0.

(i) There are only finitely many ergodic maximal measures on (I, f). Their
supports are % = (Vi_,f (L) (different i’s for different ergodic maximal meas-
ures). Either Q; = I, or Q, is a Cantor-like set.

ProOOF. We know from [3] that Theorem 3 is valid for (I, g). Hence there are
I, which satisfy (i) for g instead of f. Every I corresponds to an irreducible
submatrix of M. The map (Ve-1, Hypoy, )» (yi-r, Hy;oy; ) transforms irreduc-
ible submatrices of M into irreducible submatrices of M. Hence it follows that
the map x » 1 — x transforms every I into an [, (it may be that j = i) (cf. [3]).
Hence we have

(3.1) p/1, is either 1-1 or 2-1.

Take the sets p(I;) as the I, and (i) is satisfied for (L, f). To prove (ii) let u be an
ergodic maximal measure of (I, f) and define g on (I, g) by i(A)=35u(p(A)),
where A is a measurable subset of [0,3] or [, 1]. This is the same definition as in
the proof of Lemma 3 (we have used the isomorphic shift spaces there). For the
same reason as there, 4 is an invariant measure and has the same entropy as u.
Because of hwp(f) = hip(g), £ is a maximal measure for (I, g). i can be written
as a linear combination of the finitely many ergodic maximal measures of (I, g).
Hence the sﬁpport of 4 is a finite union of Q = M _,g *(I,). For such an ., we
have f'(p(€%:)) Cp (k) and p (p (1)) > 0. Hence by ergodicity, u (p(€%:)) = 1. As
p(Q) is closed we have supp u = p(€:). Since p is 2-1 and two of the ), have at
most finitely many points in common, it follows that either supp i = Q. for some
i, i.e. i =:witself is ergodic, or supp i = % UQ; for i # j such that 1§, = §,
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iLe. g = ﬂ/ﬁ,- + 4/ and both 22 /€ =:vand 2n /Q; are ergodic. Hence in any
case we have found an ergodic maximal measure v on (I, g) satisfying p =
vop~'. Hence (I f) has only finitely many ergodic maximal measures and

supp = p(Micog (L)) = Mo f () = NiZof (L) (use (3.1)).

THeOREM 4. If (I, f) is topologically transitive, i.e. there is a dense orbit, then
(L f) has unique maximal measure, which is positive on every nonempty open
subset of L

Proor. Forsome i, I of (i) of Theorem 3 must be equalto I and I; for j# i is
a finite set. Otherwise there cannot be a dense orbit. If u is an ergodic maximal
measure (at least one such measure must exist, because X, is expansive),
suppp = i-of“(I.)=1I by Theorem 3 (a measure concentrated on I, for j# i
has zero entropy). Hence u is the unique maximal measure and suppu = L

§4. We want to show that all results of this paper remain valid without the
assumption

(a) (J1. J2, - - -, Ju) is a generator for f.

This was used only once throughout the paper, namely to show that ¢ is
injective. If (a) is not satisfied, ¢ is not injective. Let x, y € I and suppose that
e(x)=¢(y)=x ie. f“(x)and f*(y) are in the same J; for every k Z0.1If z isin
the interval with endpoints x and y, it follows that f*(z) is in the interval with
endpoints f*(x) and f*(y). Hence ¢(z)=x. This means that ¢ '(x) is a
subinterval of I. Let H = {x € 3/ : ¢ "'(x) is an interval}. We have o (H)CH. As
there can be only countably many disjoint subintervals of I with positive length,
it follows that H is at most countable. We show that ¢ “'(H) is a nullset for every
maximal measure p. It suffices to show this for ¢ ~'(x) for all x € H. We consider
three cases.

(i) None of the points o (x), k = 0 is periodic. Then ¢ ~'(x), ¢ "'(ox),- - - are
disjoint and have increasing measure. As u (I) = 1 it follows that (¢ ~'(x)) = 0.

(i) x is periodic, i.e. there is a p such that o°(x)=x. Then
¢ (0" (x))Ce '(x) and f/o '(x):¢ '(x)— ¢ '(x) is monotone. If v is an
f-invariant measure concentrated on ¢ '(x), one has h(v)=10. As h,(f)>0,
¢ '(x) is a nullset for every maximal measure.

(iii) x is not periodic, but there is an m such that o™ (x) is periodic. Let
K=Uizme '(6"(x)). Then KCf'(K) and ¢ '(x)Cf "(KN\K. Hence
ple ') =p(fmK)— p(K)=p(K)— p(K)=0.

In [3] p is brought back from 3 first to 27. This is not affected by the
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nonvalidity of (a). It is easy to bring p back to I, because ¢ : I\¢ '(H)—2/\C is
bijective for some countable set C. We get all maximal measures of (I, f),
because there is no maximal measure concentrated on the invariant set ¢ ~'(H).
The proofs in §3 work unchanged.

As an example consider

3x for 0=x =1,
fx)=9 x for 1< x <3,
3x—2 fori=x=1.

Then I\e ~'(H) is the Cantor set of all x, whose triadic expansion contains only 0
and 2.
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