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ON INTRINSIC ERGODICITY OF 
PIECEWISE MONOTONIC TRANSFORMATIONS 

WITH POSITIVE ENTROPY II 

BY 

F R A N Z  H O F B A U E R  

ABSTRACT 

The results about measures with maximal entropy, which are proved in [3], are 
extended to the following more general class of transformations on the unit 
interval I : I  = 1,37=~Jj, the Jj are disjoint intervals, f/J~ is increasing or 
decreasing and continuous, and h,opq)> 0. 

§0. Introduction 

T h e  a im of this p a p e r  is to  ex tend  the  results  of [3] to a m o r e  genera l  class of 

dynamica l  systems.  W e  consider  (L f ) ,  where  I = [0,1] = I,.J~'=lJ~, the  J~ are  

disjoint  intervals  and  f/J~ is cont inuous  and  e i ther  strictly increasing or strictly 

decreasing.  Aga in  we  assume  

(a) ( J ,  J2 , . .  " ,J , )  is a gene ra to r  for  (L f) ,  

(b) h,op(f) > 0. 

An invariant  measure/ .L on (I, f )  is called maximal ,  if its en t ropy  h (/z) is greater  

than or equal  to the en t ropy  of every  o ther  invar iant  measure ,  or, what  is the 

same by the var ia t ional  principle [2, §18], if h( /z)  is equal  to the topological  

en t ropy  h,,,p ( f )  of (L f) .  We  want  to get the same  results abou t  maximal  measures  

on (L f )  as in [3] for  piecewise increasing t ransformat ions .  

The  f - expans ion  ~p (see §1 for  definit ion) gives an i somorph i sm of (I, f )  with a 

shift space ~7, which preserves  maximal  measures .  But ~ is not o rder  preserving,  

as it was in [3]. L e m m a  4 of [3] does not hold and all results  using this l e m m a  

need a new proof .  T o  this end  we construct  a piecewise increasing t r ans forma-  

tion g on I, such that  ( I , f )  is a factor  of (I, g),  and m o v e  the p rob l ems  to (I, g).  

A n d  for this case they are solved in [3]. H e n c e  all results p roved  there  are also 
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valid in this more  general  case (Theo rems  1 and 2 of §2 and T h e o r e m s  3 and 4 of 

§3). 

§l .  Let  (I, f )  be as in the introduct ion.  ]£2 denotes  the full one-s ided  shift over  

{1,2, • •., n}, o- the shift t r ans fo rmat ion  and _--< the lexicographic  order ing  on Y~,+. 

The  •-expansion q~:I---~Z 2 is defined by ~o(x)=x=x,x~x2. . . ,  such that  

f~ (x) E .Ix, for  i => 0. We  have  q~ of  = ~r o ~. F u r t h e r m o r e  q~ is inject ive because  of 

(a), but  not o rder  preserving (unless f /Z  is increasing for  all i). Call i good,  if f/J~ 
is increasing and bad, if f/J~ is decreasing.  W e  in t roduce a second o rder  relat ion 

<1 in Z~*. Let  x ,y  ~ Z ,  + and k _->0 be the largest  integer  such that  x~ = y~ for  

0<= i <= k - 1. x<ay, if x = y or  if the n u m b e r  of bad x,'s in x,,x~.. "xk-t is even 

and xk < yk or if the n u m b e r  of bad  x, 's  in x,,x, • • • Xk ~ is odd  and xk > yk. With 

this definit ion we have x =< y in I if and only if q~(x)<lq~(y) in Z 2. Def ine  

Z~ = q~(I) C ~ , .  5;~-\q~ ( I )  is coun tab le  (the proof  is the same  as that  of l e m m a  2 of 

[3]), hence  a nullset for every maximal  measure .  The re fo re  (I,f) and Zf  have  

i somorphic  sets of measures  with maximal  en t ropy .  If Z = ( r , s )  set a ' =  

lira, ~,q~ (t) and b '  = lim, ts~o(t). The  p roof  of the following result is as in [3] (cf. 

also §9 of [1]). 

X~={xEX+.:aX~<o-kx<ab~k for all k => 0}. 

N o w  we construct  a piecewise increasing t rans format ion  g : I --> I, of which (I, f )  

is a factor,  and move  the p rob l ems  to (I,g). Set K~ ={x/2:x E Z }  and K~,= 
{1 - x/2: x E J~} (1 -< i =< n) ,  where  i '  s tands here  and  in the sequel  for  2n - i + 1. 

Wri te  j~ for  f /J.  Define g~ : K~ --> I by 

I f,(2x )/2 if i is g °°d } 
= for  l<-i<=n, 

g~ (x)  I. 1 - f, (2x)/2 if i is bad  

g , ( x ) = l - g ~ , ( 1 - x )  for n+l<=i<=2n 

and g ( x ) =  g~(x), if x E K~ (1 <=i<-2n). For  x =½ choose  one  of the  two 

possibilities. Figure 1 shows an example  of  an f and of the cor responding  g. g has 

the p rope r ty  that  

(1.1) 1 -  g(x) = g ( 1 -  x).  

Define p : ( I , g ) ~ ( L [ )  by 

p ( x ) = { i x  if x--<½' 

- 2 x  if x _-->½. 
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Fig. 1. 

• + Then p o g  = f o p  and p is 2-1 (except for the point x =½). Let ~ .(/,g)--~'E2, 

denote the g-expansion and, if K , = ( r , s ) ,  set c J= l im,+r~( t )  and d j =  

l i m , ~ ( t )  (1 <j_-<2n). We have by (1.1) 

(1.2) ( c / , ) ' = d [  for l=<j_-<2n and k=>0. 

From [3] we know that q~(I) = ~-  = {y E ~-.: e yk ~ o'ky =< d yk Vk => 0}. Let ~i and 

~, denote the natural extensions of ~f  and ~ ,  respectively (~t = {x E Z. = 

{1,- • -, n} z : XkXk+, " " " E ~,~ V k  E Z }  and there is a 1-1 correspondence between 

the set of invariant measures of a shift space and that of its natural extension 
- I .  + + preserving the entropy). We consider ~ o p off • Z¢ ~ Zt and denote it again by 

p. 

LEMMA 1. p:5[~.---~; is given by P ( Y ) = q ( Y o ) q ( Y O ' " ,  where q ( i ) = i ,  i] 

l <=i <=n and i ', if n + l <=i <=2n. 

The proof is evident. We have also p:'d,~--~Z t given by p ( y ) =  

• . .  q(y ~)q(y , , )q(y , ) . . . .  Furthermore 

= p ( d " ) =  ~'a for l ~ i = < n ,  
(1.3) p(c ' )  

t b" for n + l < = i < = 2 n ,  

where y, = I x` if g(Ky,_,)C[O,~], 
(1.4) p - ' ( x ) =  {y,y'},  

t x; if g(K~,_,) C[½, t] 

( y ' s tands fory[~y '~ . . .  or ...y'_~y;~y'~...). 

From (1.4) one sees easily that Z~ contains exactly twice as many admissible 

blocks (i.e. blocks occurring in points of ~ )  of length n as E~-. Hence it follows 

directly from the formula for h,,,p that h ,op( ]~)=  htop(Y.~-). 
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§2. Let  ,,[x,,x, • • • x,,_,] = {y E E~ : y~ = x, for 0 _-< i =< m - 1} deno te  a cyl inder  

set. For  an admissible block x , ,x~. . .xm ~ in E~-, i.e. , , [xo . . -x , ,  ~] J O,  define 

G.x,, ...... = o " ( o [ x , , " ' x . , - ~ ] ) .  Let  D = { ( x , ,  ,,G~,, . . . . .  ): , , [ xo" 'xm , ] ~ Q } .  To-  

ge ther  with the arrows (xm-1, Gxo. ...... )---~(x,,, G~o...x.), D becomes  a d iagram M 

(cf. [3]). Set ZM = {z E DZ:  there is an arrow f rom z, to z~+~ in M for  all i E Z } .  

As in [3] we want  to define an i somorph ism to:ZM\N---~ZM, where  N = 

{ x E E r : = l m  E Z  so that V j < m  3 k - j  with XkXk+~'''X,. = a [ , . ' ' a ~  k or 

b [ , - "  bl. k for some  i and ...x,._~_x,._~x,. is not periodic}. 
+ + 

T o  do this set Hy. .y ._ ,  = o-" (,,[y,, • • • y.,_,]) C Y, for all admissible blocks  in Z~, 

set /9 = {(y,. ,, Hy,,..~y m ,): ,,[y,," • • y,. t] ~ Q in Z~.} and toge ther  with the arrows 

(y~._,, Hy,,..y., ,)---~ (y.., Hy,,..ym) we get a d iagram )~/. Define r : /~ ~ D by 

r(y,,_,, H~,,...~. , )  = (q(y,, ,), G,,~,,,...,u. ,,). 

If z , , z 2 E I D ,  there  is an ar row z ,--*z2 if and only if there  is an ar row 

r(z,)---~ r(z2), i.e. r respects  the arrows in ~ /  and M. 

Let  ZM be  defined as EM. Define  p : E M  ~ Z M  by 

p ( . . .  z _ , z o z , . . . )  . . . .  r ( z _ , ) r ( z o ) r ( z , ) . . . .  

The  sequence  at the right hand side is in EM, because  r respects  the ar rows of 

and M. r and p are again 2-1. As g is piecewise increasing we have  an 

i somorph ism 4~ :'s'g//V---*E~a cons t ruc ted  in §2 of [3], where  /V = {y E E,  : 

3 m  E Z  so that  V j < m  3k<=j  with y k " ' y ~  = c ~ , . ' . c ~ - k  or d~,.. .d~., k for  

some i and . . .  y,, ~y,, is not periodic} = p-2(N).  We define tO :Et\N---~'ZM by 

tO = p  °4~°p -z, i.e. such that  the following d iagram is commuta t ive .  

E t \ N  * ~ EM 

LEMMA 2. tO is well defined and an isomorphism. 

PROOf. Let  x ~ Zt \N.  p - ' ( x )  contains  two points  y and y '  (of. (1.4)). But  ~ ( y )  

and q~(y') are m a p p e d  to the same  z E ZM by p because,  if q~(y) has entry  

(y~,,G~,~.,.) at some coordina te ,  then 0 ( y ' )  has entry  (y ' ,G~; . . .~ , )  at this 

coord ina te  (cf. the definition of ~ in §2 of [3]). Tha t  tO is an i somorphism,  follows 

because  0 is one.  One  can define tO ~ in the same way as tO. 

LEMMA 3. I f  u is a ~r-invariant measure concentrated on N then the entropy 

h ( u )  of u is zero. 
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PROOF. Let ~ be the measu re  on E~ defined by 

~(,,[y,," • • y,, , ] )=  ' , ( , , [q(y , , ) . . .  q(y. ,- , )]) .  

It is cr-invariant,  because  k E { 1 , 2 , . . . , 2 n }  can be p receded  e i ther  by m or by 

m ' E { 1 , 2 , . . . , 2 n }  in a point  y E E , ,  not by both (cf. the definit ion of g).  It 

follows directly f rom the fo rmula  for the en t ropy  that  h (~) = h (u). F u r t h e r m o r e  

o p - ' =  v and p ' ( N ) =  ]Q, hence  ~( /Q)=  1. By l emma  7 of [3] it follows that  

h ( 9 ) = 0  and hence  h ( u ) = 0 .  

Because  of (b) it follows f rom L e m m a  3 that  N is a nullset for every  maximal  

measu re  (cf. §0 of [3]). H e n c e  

THEOREM 1. ('~f, tr) and ('ZM, tr) have isomorphic sets of  max ima l  measures, 

and hence the same is true for (I, f )  and (£M, o'). 

We consider  M as a matr ix  with entr ies  0 and 1. M~k = 1, if and only if we have  

an ar row j -~  k (j, k E D) .  Let  M ' ,  M2, . .  • be  the i r reducible  submat r ices  of M. 

The  p roof  of the following t h e o r e m  about  Y-,M is the same  as in [3]. 

THEOREM 2. (i) h,,,p(~M) = log r (M) ,  the logarithm of the spectral radius of  the 

l~-operator u ~ u M  (u ~ l~). 

(ii) Every ergodic max imal  measure is concentrated on a "ZM, = 

{z E DZ:M~z ..... = 1 for all k E Z }  satisfying r ( M ' )  = r (M) .  

(iii) For every such M i there is at most one max imal  measure concentrated on 

£M,. It is Markov  given by 7rj = u, vj and P,k = Mi~vk/r(M)vj  (j, k E D) ,  where u is 

a left and v a right eigenvector of  M ~ for the eigenvalue r ( M ' )  = r (M) .  

It suffices to de t e rmine  the ergodic  maximal  measures ,  because  they are the 

ex t remal  points  of the compac t  convex set of all maximal  measures .  For  this one  

can use T h e o r e m  2. To  get more  informat ion  about  M, we can use the results 

about  h~/ ob ta ined  in [3]. As there  we divide every  c '  (1 _-< i - 2n)  into initial 

segments  of the d j (1 = < j - < 2 n )  and deno te  their  lengths by r(i, 1), r(i, 2 ) , . . .  

(r(i,m)>= l), i.e. 

C ~ = C i ,(~.~) ...... o,~.k = d{, for 0 ~ k < r(i, m + 1 ) -  I, j = ,o.~) ...... (~,m). 

C ~(i,1) . . . . . .  ( i ,m+l)  ~ d~(,...+,) 

Similarly divide every  d i (1 < j _-< 2n)  into initial segments  of the c '  (1 -< i -< 2n )  

and deno te  their  lengths by sQ' , l ) ,s( j ,  2 ) , . . .  ( s ( j , m )  >-_ 1). We  have  always 

r(i, 1) = s(i, 1) and by (1.2) we have  r ( i , m ) =  s ( i ' , m )  for 1 -< i _-<2n and m -> 1. 

O n e  gets c '  and d '  as p - ' ( a ' )  = {c', d"} and p - ' ( b ' )  = {c r, d '}  (cf. (1.3)). In [3] it is 
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proved t h a t / ~ / c a n  be described as fo l lows. /3  = {(A, i, k ), (B, fi k ) : 1 =< i, j = 2n, 

k => l and (A, i, k ) =  (B, i, k)  for 1 <= k <= r(i, 1)}. /V/ has the following arrows. 

(A, i, k)---~(A, i, k + 1), (B,j, k)--~(B,j ,  k + 1). 

If k = r(i, 1)+ . - .  + r(i, m )  for some m then 

(A, i, k ) --> (B, j, r (i, m ) + 1), where j = C i,(i, 1) . . . . . .  (i,m--l) and 

(A, i, k)-->(A, t, 1) = (B, t, 1) for c ~ <  t < d~(,,m). 

If k = s ( j ,  1 ) + ' " + s ( ] , r n )  for some m then (B , j , k )  ---> 
(A, i, s(j, m ) +  1), where i = d~0,1) ...... o,m-1) and (B,j, k)  ---> (A, t, 1)) = 

(B, t, 1) for ciso.m)<t<d~. 

One gets M applying r to the elements  of /3. As ( A , i , k )  stands for 

(c~ ,,H,,,, c~ ,) and (B , j , k )  for (d~, ,,Hd/, d~ ,) we have r ( A , i , k ) =  r (B , i ' , k ) .  
Hence we get M identifying (A, i, k ) and (B, i', k ) in/3.  Denote  this equivalence 

relation by - .  Then M = / f ' / / - .  Arrows are respected by - ,  because they are 

respected by r. 

EXAMPLE. Let n = 2, f /J ,  is increasing, f (end  point of A) = 1, f / L  is 

decreasing and f(J~) = I, i.e. f has a graph like the one in Fig.2. At  the right hand 

side we have drawn the graph of the corresponding g. 

Fig. 2. 

/ 

I [ 

! I 

- - - - - - T - - - - -  / 
I I ,y 

From [4] we know what the diagram M for g looks like. Let c be the 

g-expansion of 0 and d the g-expansion of 1. Let r,, r 2 , " "  be the lengths of 

initial segments of ld  in c. By symmetry of g, r , , r2 , - . ,  are also the lengths of 

initial segments of 2c in d. /3 can be represented by {(A, k ), (B, k) :  k => 1} and 

we have arrows ( A , k ) - - ~ ( A , k + l ) ,  ( B , k ) - - ~ ( B , k + l ) ,  ( A , r , + " ' + r m )  

---~(B, r~,), (B,r~+ " "  +r,,)---~(A,r,,) (cf. §1 of [4]). 

r I r 2 /'3 

• . _ , . . ~  . . . . . . .  { ( A ,  k ) }  
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We get M identifying ( A , k )  and (B, k). Hence D = {k :k -> 1} and we have 

arrows k ~ k + l  and r , + . . .  +r , , - -*r , ,  

r I r 2 r~ 

We know from [4] that /~/ contains exactly one irreducible submatrix with 

maximal spectral radius. Hence the same is true for M and by Theorem 2 an 

(L f )  as above has always unique maximal measure. 

§3. We want to generalize two theorems of [3]. 

THEOREM 3. (i) I = U L (finite or countable union), where every I~ is a finite 

union of closed intervals. If i < j, L and Ij have at most finitely many points in 

common and there is no x @ Ii\L with [k (X)E  I, for some k >=0. 

(ii) There are only finitely many ergodic maximal measures on ( l , f ) .  Their 

supports are f~, = I'-)~=,~ f-k(I~) (different i's for different ergodic maximal meas- 
ures). Either fL = L or ~ is a Cantor-like set. 

PROOF. We know from [3] that Theorem 3 is valid for (I, g). Hence there are 

L, which satisfy (i) for g instead of f. Every L corresponds to an irreducible 

submatrix of /~/. The map (yk-,, Hy,,...y~_,)~ (y;, , ,  Hy,;...y~ ,) transforms irreduc- 

ible submatrices of hT/ into irreducible submatrices of/~/. Hence it follows that 

the map x ~ 1 - x transforms every L into an ~ (it may be that j = i) (cf. [3]). 

Hence we have 

(3.1) p/L is either 1-1 or 2-1. 

Take the sets p (~)  as the L and (i) is satisfied for (L f). To prove (ii) let /z  be an 

ergodic maximal measure of (L f )  and define/2 on (/, g) b y / 2 ( A )  = ~l~(p(A)), 

where A is a measurable subset of [0,~] or [½, 1]. This is the same definition as in 

the proof of Lemma 3 (we have used the isomorphic shift spaces there). For the 

same reason as there, /2 is an invariant measure and has the same entropy as ~. 

Because of h,op(f)= h,,,o(g), 12 is a maximal measure for (L g). /2 can be written 

as a linear combination of the finitely many ergodic maximal measures of (L g). 

Hence the support of/2 is a finite union of 1~, = n~=,, g-k (~). For such an l~,, we 

have f - ' (p(( l , ) )  Cp (1~,) and/~ (p (1~)) > 0. Hence by ergodicity,/z (p (1~)) = 1. As 

p ( ~ )  is closed we have supp tz = p(l~,). Since p is 2-1 and two of the l), have at 

most finitely many points in common, it follows that either supp/2 = ~,  for some 

i, i.e./2 = : u itself is ergodic, or supp/2 = 1~ tO l~j for i ~ j such that 1 - ~ = l'~j, 
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i .e . /2 = /2  ]1~, +/2]t~i  and both  212/~, =:  r a n d  2/2/(~j are ergodic.  H e n c e  in any 

case we have found  an ergodic  maximal  measu re  v on (I, g)  satisfying /~ -- 

v op -~ Hence  (L f)  has only finitely many  ergodic maximal  measures  and 

s u p p ~  = p ( f q ~ , , g - ~ ( L ) ) =  f q ~ , , F ~ ( p ( ~ ) )  = NL,,f-~(I,) (use (3.1)). 

THEOREM 4. If (L f)  is topologically transitive, i.e. there is a dense orbit, then 
(L f) has unique maximal measure, which is positive on every nonempty open 

subset of L 

PROOF. Forsomei,  L o f ( i ) o fThe ore m3mu s tb eeq u a l t o  l andlj f o r j #  i is 
a finite set. Otherwise  there  cannot  be  a dense orbit .  I f / z  is an ergodic maximal  

measu re  (at least one  such measu re  must  exist, because  Y,~ is expansive) ,  
- k  supp/z  = Ok= , , f  (L) = I by T h e o r e m  3 (a measure  concen t ra ted  on Ij for  j #  i 

has zero ent ropy) .  Hence  /z is the unique maximal  measure  and supp/z  = I. 

§4. We want  to show that  all results of this pape r  remain  valid wi thout  the 

assumpt ion  

(a) (J,, J2, " • ", J , )  is a gene ra to r  for  f. 

This  was used only once  th roughou t  the paper ,  namely  to show that  q~ is 

injective.  If (a) is not satisfied, q~ is not injective. Let  x, y E ! and suppose  that  

q~ (x)  = q~ (y)  = x, i.e. fk (x)  and fk (y)  are in the same J, for every k => 0. If z is in 

the interval  with endpoin t s  x and y, it follows that  fk(z)  is in the  interval  with 

endpoin t s  fk(x)  and / k ( y ) .  H e n c e  ~ p ( z ) = x .  This  means  that  q~ ' (x)  is a 

subinterval  of L Let  H = {x E Eta: q~-J(x) is an interval}. We have  o - (H)  C H .  As  

there  can be only countably  many  disjoint subintervals  of I with posi t ive length,  

it follows that  H is at most  countable .  We  show that  ~¢-~(H) is a nullset for  every  

maximal  measure /~ .  It suffices to show this for  ~0-~(x) for all x E H. We  consider  

three  cases. 

(i) N o n e  of the points  o-k (x), k _-> 0 is periodic.  Then  ~0-~(x), q~-'(~rx), • • • are 

disjoint  and  have  increasing measure .  As/ . t  ( I )  = 1 it fol lows tha t /x  (¢-~(x))  = 0. 

(ii) x is periodic,  i.e. there  is a p such that  o-P(x)=x. Then  

q~ ~(o-P(x))C~0-'(x) and fP/q~-'(x):~o-'(x)--~o-'(x) is mono tone .  If v is an 

f - invar ian t  measure  concen t ra ted  on q~-'(x), one  has h ( v ) =  0. As  h ,oo( f )>0 ,  

q~-~(x) is a nullset for every maximal  measure .  

(iii) x is not periodic,  but there  is an m such that  o - ' ( x )  is periodic.  Let  

K=l,.Jk~=mq~-'(~rk(x)). Then  K C f - ' ( K )  and ~-~(x)Cf-m(K)\K. H e n c e  

~ (W- ' (x))  < - / ~  (f-m ( K ) ) -  ~ ( K ) = / ~  ( K ) - / ~ ( K )  = 0. 

In [3] ~ is b rough t  back  f rom ~s4 first to 2~. This  is not  affected by the  
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nonvalidity of (a). It is easy to bring ~ back t o / ,  because ~ : I\~-~(H)---~ ~ - \ C  is 

bijective for some countable set C. We get all maximal measures of (L.f), 
because there is no maximal measure concentrated on the invariant set q~-l(H). 
The proofs in §3 work unchanged. 

As an example consider 

3x for 0 _ - < x ~ ,  

/ ( x ) =  x for ~ < x < ~ ,  

3 x - 2  for ~ -<x-< l .  

Then I \~ -a (H)  is the Cantor set of all x, whose triadic expansion contains only 0 

and 2. 
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